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Simulation code
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o Simulation code predicts state of time-evolving system

- Y(t) = time-dependent state of system

- Y(0) = initial state of system

« Many underlying models needed to simulate complex physical situation
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Vaidation of Simulation Code

Validation = experimentally demonstrate that simulation code
satisfactorily predicts behavior of a specified aspect of the
physical world

Goal isto estimate and minimize uncertainties in predictions
Simulation code depends on many basic models

Validation experiments
— basic experiments needed to validate basic models

— Integrated experiments to validate intermediate levels of combinations of
basic models

— fully integrated experiments to validate complete simulation package

Need analysis methods to accumulate and quantitatively assess
Information about set of models for large number of experiments
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Simulation Codes

Used to predict time evolution of physical systems

Based on

— partia differential equations (PDES)
» fundamental physics
 approximations

— behavior of materials and interactions between them
« domain of physical variables
Examples
— fluid dynamics; liquids, gases, ocean, atmosphere

— hydrodynamics; solids under extreme pressures, high velocity impacts,
explosives

— electrodynamics; charged particles, magnetic fields; plasmas
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Uncertainty Analysis

Uncertainties in model parameters characterized by probability
density function (pdf)

|nference about model s requires knowledge of uncertainties
— e.g., needed for model revision

New experiments may be designed to reduce uncertainties through
sensitivity analysis
Goal Isto estimate and minimize uncertainties in predictions
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Uncertainty Analysis

Based on complete characterization of uncertaintiesin
experiments

— Incorporate “systematic” uncertainties

— include uncertainties in experimental conditions

Must handle correlations among uncertainties

Combine results from many (all) experiments
— reduce uncertainties in model parameters
— reguire consistency of modelswith all experiments
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Example of ssimple basic physics model
| sothermal dependence of gas pressure on density

e Assume linear model to
describe dependence (ideal gas) o

e Determine two parameters, 1o}
Intercept and slope, by
minimizing chi-sguared based
on four available measurements 4]

PRESSURE

e Usethislinear model in 2f
simulation code where pressure o!
Of gas |S needed and denS| ty |S O, 00 010 G.EDEHSI$fD 0.40 030
calculated
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Example of ssimple basic physics model
| sothermal dependence of gas pressure on density

2Hlr -

o Uncertaintiesin parameters, derived i el
from uncertainties in measurements, gt SE
given by Gaussian pdf in 2-D ;
parameter space

— correlations evidenced by tilt |
— points are random draws from pdf |

 However, focus should be on
Implied uncertainties in dependence
of pressure vs. density

— light lines are plausible model
realizations drawn from parameter pdf

— characterize uncertainty in dependence

PRESSURE

0.00 0.10 0.20 0.30 0.40 0.50
DEMNSITY
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Example of ssimple basic physics model
| sothermal dependence of gas pressure on density

Correlations in uncertainties are RS —
critically important fof

Plot shows random samples from
uncertainty in slope and intercept
Ignoring correlations

PRESSURE

Uncertainties in dependence of ol
pressure vs. density far exceed ot A . .
uncertainties in measurements 00 010 o2 0% 040 0

DENSITY
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Example of ssimple basic physics model
| sothermal dependence of gas pressure on density

* Suspected departure from linearity
might be handled by using
quadra]:ic for modeél [

— curve constrained to go through origin 10| .
e Comparison with previous linear 8 :
model demonstrates increased |

uncertainties in model outside of
density measurement range

e Conclusion: desirable to conduct
basic physics experiments over full 00 010 0B a0 080 080
operating range of physical
variables used by ssmulation code;
extrapolation increases uncertainty

PRESSURE
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Parameter estimation - maximum likelihood

M easurements, Y

— W(t)
Initial State Sl fiar >
Y(0)

M easurement

System Model Y*(a)

>

- In P(Y|Y*)

Model A
o

Optimizer

Measurement system model cal cul ates measurements that experiment
would obtain for the smulated state of the physical system W(t)

Match to data summarized by minus-log-likelihood, -In P(Y|Y*} = 1, X2
Optimizer adjusts parameters (vector a) to minimize -In P(Y [Y*(a)}
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Adjoint Differentiation of Forward Calculation

X Yy Z
- | A | B | C _(I))
99 99 d¢
oX oy 07

Data-flow diagram shows sequence of transformations A, B, C that convert
data structure x to y to z and then scalar ¢.

Derivatives of ¢ with respect to x are efficiently calculated in the reverse
(adjoint) direction.

CPU time to compute all derivatives comparable to forward calculation
One may need to keep intermediate data structures to evaluate derivatives

Code based: logic of adjoint code derivable from forward code
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Analysis of single experiment

e Likdaihood

— p(Y | Y*) = probability of measurements Y given the values Y*
predicted by experiment ssmulation. (NB: Y* depends on a)
e The pdf describing uncertainties in model parameter vector a,
called posterior:
— p(afY) e p(Y [Y*)p(a)  (Bayeslaw)
— p(a) isprior; summarizes previous knowledge of o

— “best” parameters estimated by maximizing p(a [Y) (called MAP
solution)

— uncertaintiesin a are fully characterized by p(a [Y)
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Helpful to use logarithms of probabilities

In terms of |og-probability, Bayes law becomes.
-Inp(a [Y)=-Inp(Y|a) - Inp(a) + constant

Parameters are estimated by minimizing - In p(a [Y)
Gaussian approximation of probability:

-Inp(a) =@=@+ (a0 -0y K (a—ay),
where K s the curvature or second derivative matrix of ¢ (aka
Hessian) and o IS the position of the minimum in @
Covariance matrix isinverse of K: C =K-1
Likelihood for Gaussian measurement uncertaintiesis

AINP(Y|Y*} =y, x° =2 {yi-y)I(20)}?
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Gaussian probabilities

Bayes law:
-lInp(a [Y)=-Inp(Y|a) - Inp(a) + constant
For Gaussians
-Inp(a [ Y)=@=@+ (0 —0y)" Ky (00— 0p) =
(a-a)"K, (a—a,)+(a-ap)" Kp (0 —0ap) + const.,
where subscripts L & P refer to likelthood & prior
Covariance matrix of posterior Is:
Co=Kgt=[K_ +Kp]™
Estimated parameters are:
O = Koo Ky +opKp]
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Parameter uncertaintiesviaMCMC

Posterior p(a |Y) provides full uncertainty distribution

Markov Chain Monte Carlo (MCMC) agorithm generates a
random sequence of parameters that sample p(a |Y)

— resultsin plausible set of parameters{a}
— representative of uncertainties
— second moments of parameters can be used to estimate covariance matrix C

MCM C advantages

— can be applied to any pdf, not just Gaussians
— automatic marginalization over nuisance variables

MCMC disadvantage
— potentially calculationally demanding
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Markov Chain Monte Carlo

Generates sequence of random samples from atarget probability
density function

e Metropolis algorithm:

July 31, 1998

draw trial step from symmetric
pdf, i.e.,, T(Aa) = T(-Aa)
accept or reject trial step
simple and generally applicable

relies only on calculation of
target pdf for any a

works well for many
parameters

oy

Prob(a,, a.)
« accepted step
* rejected step

MaxEnt98 - Garching, Germany 17



Parameter uncertaintiesviaMCMC

Measurements, Y

” W(t)
Initial State Simulation —>
{¥(0)}

M easurement

System Model [y (q)

L

- In P(Y|Y*)

— 1/2 X2

Modd A
{a}

MCMC

-InP(a [Y)

<€

Markov Chain Monte Carlo (MCMC) algorithm generates a sequence of

parameter vectors that randomly sample posterior probability of parameters

for givendatayY, P(al Y)
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Thissequence{a} represents aplausible set of parameters
Must include uncertainty ininitial state of system, { W(0)}
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Uncertainty analysis with Bayes | nference Engine
Example of reconstruction from just two radiographs

» Reconstruction problem solved with Bayes Inference Engine (BIE)
using deformable boundary model

« MCMC generates set of plausible solutions, which characterize
uncertainty in boundary localization

Data flow diagram in BIE

Input projections
Pl

—

Boundary EX
specification Proj Data

— il

Coreer |

Log Curve Paoe

—log prior = —=2 K2dS Karkoe-chain Monte Carla ] ]
A Reconstruction with several

plausible boundaries
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Simulation of plausible outcomes -
characterizes uncertainty in prediction

Initial State\ Simulation
Y(0)

W)

Model A
{a}

« Simulation code predicts plausible results for known uncertainties in

parameters

— {W(t)} = plausible sets of dynamic state of system

— {a} = plausible sets of parameter vector a
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Uncertainty in predictions

e Estimate by propagating through simulation code a set of
parameter samples drawn from joint posterior distribution
of all parameters describing constituent physics models

e Assumptions about simulation code:

— appropriate physics models included; can be checked using
carefully designed experiments (validation issue)

— numerically accurate (verification issue)

o Other stochastic effects in ssmulation may be included
— variability in densities
— chaotic behavior
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Plausible outcomes for many models

July 31, 1998

Initial State : :
—>  Symulation
{¥(0)}

W)

[\

Model A Model B
{a} {B}

* Integrated ssimulation code predicts plausible results for known
uncertainties in initia conditions and material models

{W(1)} = plausible sets of dynamic state of system
{W(0)} = plausible sets of initial state of system

{a} = plausible sets of parameter vector a for material A
{B} = plausible sets of parameter vector [3 for material B

MaxEnt98 - Garching, Germany
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Analysis of many experiments involving
several models

e Complications
— complexity of handling large number of analyses
— logic and dependencies are difficult to follow
— need for global analysis

— correlations between uncertainties in parameters for various are induced
by analyses dependent on several models

* A comprehensive methodology is needed
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Graphical probabilistic modeling

A,

Analysis of experimental data'Y
Improves on prior knowledge p(Y |a) p(a)

about parameter vector o '
Bayes law Q
p(a | Y)~p(Y|a)pa) v p(a | Y)

(posterior ~ likelthood x prior)

a
Use bubble to represent effect of i
analysis based on data Y o(a) o(a | Y)
Intermsof logs: - Inp(a |Y) = y @ >

-Inp(Y|a) - In p(a) + constant

July 31, 1998 MaxEnt98 - Garching, Germany 24



Graphical probabilistic modeling

ﬂ,@ p( IYQ}Q p(o, BIY,Y),)
Exp.1 © Exp.2 OB >
p(B)

Output of second bubble:

p(o, BIY,Y)~p(Y,Y,la B)p(a, B) (Bayeslaw)
~p(Y,|a, B)p(B)pla|Y,)
(likelihood 2 x prior(f3) x posterior 1)

~p(Yzlo, B)p(B) p(Y. | o) p(a)
(likelihood 2 x prior(f) x likelihood 1 x prior(a))

Summary: Action of bubble isto multiply input pdfs on
left by likelihood from experiment to get output joint pdf
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Graphical probabilistic modeling

o Useful for complete analysis of many experiments related
to several models
— displayslogic
— explicitly shows dependencies
— sociological and organizational tool when many modelers and
experimenters are involved
e Result isfull joint probability for all parameters based on
every experiment
— uncertainties in all parameters, including their correlations, which
Is crucially important
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Example of analysis of several experiments

p(B)

py) o B
Exp.3 VY Exp.5 5 >
Y plaByolY,Y,Y,;Y,Ys)
0(3) /

Output isfull joint probability for all parameters based on all
experiments
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Need to avoid double counting

@) @ Expdafy >
plaBy|1234)
P(B)

Output of analyses of both Exps. 2 and 3 make use of output of
Expt. 1 and prior on 3. Thisrepetition must be avoided In
overall posterior calculation through dependency analysis:

-Inp(aPByl|l1234)=-Inp(l|a)-Inp(a)-Inp(2|af)-Inp(B)
-Inp(3|af)-Inp@d|aBy)-Inp(y) + constant
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Model checking

 Mode checking is anecessary a,
part of any analysis. check model
against all experimental data

« Thus, need to check consistency
of full posterior wrt each of its
contributions, for example

— likelihoods from Exps. 1 and 2 are
consistent with each other

— however, Exp. 2 isinconsistent with
posterior (dashed) from other exps.

— Inconsistency must be resolved in
terms of correction to model and/or
experimental interpretation
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Summary

* A methodology has been presented to cope with combining
experimental results from many experiments relevant to several
basic physics models in the context of a simulation code

— suggest using a graphical representation of a probabilistic model

« Many challengesremain

— correlations in experimental uncertainties
— systematic experimental uncertainties

— detection and resolution of inconsi stencies between experiments and
simulation code

— normalization of likelthoods of different types

 More on WWW:- http://home.lanl.gov/kmh
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